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Abstract. We propose a non-perturbative approach to the 22 model on the lattice. A 
Hamiltonian calculation in d = 2  is performed using a loop-labelled basis explicitly con- 
structed with ‘cluster’ structures. The SchrBdinger problem leads to a linear set of finite 
difference equations that is solved numerically. Solutions for the energy of the vacuum 
and first excitation mass gap are found. 

1. Introduction 

The 2 2  gauge-Higgs model has attracted considerable attention [ 1-91 because it exhibits 
an interesting phase structure and yet it is sufficiently simple to greatly simplify its 
analysis. I t  is currently of interest to particle theorists in the study of confinement and 
Higgs phenomena. A qualitative structure of the phase diagram has been described 
by Fradkin and Shenker [IO], among others [l-91. This model has been studied within 
the Euclidean path integral formalism [5,6], which is amenable to numerical 
implementations, but is probably not the most economical device to understand the 
real dynamics of the system. The large number of irrelevant degrees of freedom 
constitutes a significant difficulty to the numerical approach. A natural step to identify 
the real degrees of freedom of the model is the Hamiltonian formalism of Kogut and 
Susskind [ 111. However, even in this formalism, one still has to deal with a spatial 
gauge symmetry. This degeneration can be eliminated if we work in the subspace 
defined by Gauss’s law (gauge-invariant sector) [3-4, 12-14]. 

Two of the authors have proposed [I21 an analytical Hamiltonian approach to 
continuum gauge theories and to their lattice version. The method is based in the 
formulation in a space of states labelled by elements of the group of loops 112-161 
which parametrize the subspace of solutions of Gauss’s constraints. The first application 
of this approach to matter fields was the formulation of the dynamics of an SU(2) 
gauge theory with Higgs bosons [14] using open paths instead of closed ones or loops, 
Recently, another gauge theory with matter fields, the compact QED with fermionic 
matter fields, has been studied within this framework [17]. 

Recently [ 131, a general computational method based on loop techniques was 
presented to deal with the Hamiltonian SU(2) lattice gauge model, and the SU(3) 
theory was also studied in [ 181. Owing to the fact that linked clusters played a relevant 
role in the construction of the basis, the method can be classified as a strong-coupling 
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series approach with some built-in mechanism to extrapolate towards the weak-coupling 
region. 

The structure of this paper is as follows. In section 2 we introduce the path 
representation for the 2 2  gauge-Higgs model. In section 3 we propose a cluster 
approximation which reduces the Schrodinger equation to a partial difference equation. 
We compute the ground state energy and the mass gap in order to obtain information 
about the phase diagram. In section 4 we discuss our results and in section 5 we make 
some final comments. 

2. The P representation 

The 22 gauge-Higgs Hamiltonian is given by 

where p and 1 label plaquettes and links respectively. We define q ( p ) = ( ~ ~ u , u ~ u ~ ) ~  
and ~ ( / ) - ( T ~ U ~ T ~ ) ~ ,  where the us and T S  are usual Pauli matrices associated with 
links and vertices respectively. The parameters A and p measure the gauge and Higgs 
coupling. The parameter p, apparently, is irrelevant near the critical point [7]. However, 
in [4] it is shown that the phase diagram is quantitatively sensitive to !he choice of p. 
When p = 1, the symmetry of the model simplifies the numerical calculus. From now 
on we choose p = 1. 

The configuration basis Is, U), labelled by the values of the spin on each site s, and 
each link U,. is not gauge-invariant. A description of states on a gauge-invariant basis 
may be given in terms of !he dual basis IP) defined by 

(2.2) 

where Q is the number of links and V the number of sites of the lattice, C is an 
'unoriented' spatial closed path and P, are open spatial connected 'unoriented' paths 
with end points xi and y , .  From (2 .2)  it is easy to see that 'double' links and 'double' 
sites do not affect !he scalar product for the P-representation in the 22  gauge-Higgs 
case. 

In the P-representation, the Hamiltonian operators act as follows: 

d P ) l P ) =  IPP) PP1)lP)=Iw 
(2.3) 

where fi "l.Y - = ! if link ! be!ong: !n P and 0 e!herwise, whi!e 8x,p metscres if !hr si!. x 
belongs to P. Thus, the Hamiltonian may be rewritten as 

(~,) , lP)=(1-2sl , ,)IP) ( 7 ,  )X 1 p)  = ( 1 - 2 S . p  )I p )  

where the operator Lo,  measures the length of P and No,  the number of connected 
pieces of P. 

3. The cluster approximation 

To solve the Schrodinger equation we use a cluster approximation [13] that holds at 
the strong-coupling region. In this approximation we will consider a basis of states 
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labelled by an unordered list of connected paths (open or closed) corresponding to 
the 2 2  gauge-Higgs case. A given list may contain several sublists located wide apart 
in the lattice that we will call clusters [13]. In order to describe the ground state of 
the system we think of a cluster as a class of equivalent paths differing by PoincarC 
transformations of the lattice. Within this view, it is only necessary to specify the 
occupation number of each non-equivalent cluster. Therefore, by taking an arbitrary 
numbering of clusters, a general list will be specified as 

where nj denotes the number of times the cluster i appears in the list. The next step 
is to introduce an ordering among clusters. This may be done in a recursive way. The 
null path is the order zero while a single plaquette and a single link is the order one. 
The Nth order is obtained by the action of the Hamiltonian on clusters of order N - 1, 
keeping only clusters obtained when the plaquettes are appended in direct contact 
with a link of a closed path and when links are appended in direct contact with a link 
or an extreme of an open path. 

Now we propose an approximation procedure where we consider only clusters of 
order less than or equal to two. There are five clusters to this order in a d = 2 lattice, 
the single plaquette, single link, double plaquette, double links in the same direction 
and double links in transversal direction. Accordingly, the basis is restricted to states 

The following step is to evaluate the action of the Hamiltonian on the basis given 
b y  (3.2). For convenience we work with H ’ =  AH, where H is defined in (2.4). There 
will be transitions to clusters that are considered to the order two and others that 
produce new clusters that are outside the range of the list considered in (3.2); the 
latter cannot be processed exactly. In order to improve the method and induce a good 
extrapolation to the weak-coupling region we introduce what we call collective variables 
[ 131. These variables are additive quantities that take values on every cluster. Their 
use allows the transition to a cluster outside of the order to be counted partially by 
keeping track of the value of the collective quantity for the reached cluster. 

The collective variables we use are the length L and the number of connected 
pieces N of the path. For the state in the number representation (3.2), these variables 
take the values 

L =  4 n , t  n , t  6 n , t 2 n 4 t  Zn, N = n , t  n,+ n , .  (3.3) 

Now it is possible to exchange some variables, say n ,  and n 2 ,  by a linear combination 
of L and N, and consider states of the form 

so when we evaluate a transition induced by H ’  we must take into account the changes 
in L and N as those in n, ,  n4 and n , ,  in order to evaluate the changes of n ,  and n,.  

Under these assumptions the Schrodinger equation 

(*olH’ln,, n , , n , , n , , n , ) = E ~ ( * , l n , ,  n2,n3,n4 ,  ns) (3.5) 



(3.7) 

Equation (3.6) has solutions of the form 

(3.8) 

The term proportional to M in (3.6) must vanish separately and produces the 

~ " " " " "  i P o ( n , ,  n 2 ,  n3, n4, n,)  = x ; ~ x " ~ x ' " x " * x ~ ~ ~  2 3 4 5 '  

dispersion relation 

E,, = xI + 2pAx, (3.9) 

while the terms proportional to ni vanishing separately produce a nonlinear system of 
equations: 

(3.10) ml, x2, x3, x4, x5) = o  
where i = 1, .  . . , S .  From (3.10) all the five variables may be determined. 

nomic modulations of the ground state. We look for solutions of the form 
To find solutions that will describe the elementary excitations, we propose poly- 

W n , ,  n 2 ,  n3, n4, n5) 

(3.11) 

from which the mass gap A is obtained as the lowest eigenvalue of the proper value 
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problem 

where 

D..a. = Aa. 
' ) I  

(without summation in j )  

(3.12) 

(3.13) 

As in (3.9), we obtain the following relation for the ais: 

a,x l  +2pAa2x2+ A =  0. (3.14) 

4. Results 

In figure 1 we show the solution for E~ represented versus A for diverse values of the 
parameter p. The introduction of collective variables allows us to reach the weak- 
coupling region. However, we do not have an exact description of this region since 
the method is an asymptotic strong-coupling series carried out only to the second order 
of approximation. Figure 2 shows the mass gap versus A .  In order to detect a phase 

. P.O.1 
A P . 0 . 5  

0.0 
0.0 05 1.0 1.5 2 0  

.I 

Figure I. Vacuum energy versus A for p = 0.1, 0.5 and 0.9. 

A 

Flgure 2. Mass gap versus A for p =0.1, 0.5 and 0.9 
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0.5 1.5 2.5 
A 

Figure 3. Logarithmic derivative of mass gap versus h far p =O.l, 0.5, 0.9 and 1.3. The 
value at the maximum is taken as an estimate of the transition point for each p. 

I 

Figure 4. Phase diagram. The full lines indicate the estimated second-order transition. 

Tsblc 1. Critical points as predicted by several approaches. The last corresponds to the 
present approach. 

~~ 

0.556 0.615 Finite-lattice method [4] 
0.37 - Stron$-coupling expansion [7] 
0.573 0.59 Strong-coupling expansion [8] 
- 0.68 Variational method [3] 
0.80 0.81 Clusters with collective variables 



Path calculus for Z2-Higgs lattice gauge model 3165 

transition it is convenient to plot the logarithmic derivative of the mass gap versus A 
(figure 3). In this graph the curves corresponding to diverse values of p exhibit a peak 
that dilutes when the value of p increases until it eventually disappears. The peak 
indicates a transition for every p at a certain value of A and, as is expected [l-91, the 
transition disappears when one goes into the phase diagram. The transition that we 
can detect is a second-order one since we obtain it from a maximum in figure 3. Using 
these criteria and the duality properties of the Hamiltonian we can obtain a phase 
diagram (figure 4) where the full lines indicate the second-order transition. Our results 
for the value of Az at which the transition occurs for the pure gauge model and for 
the value pc = A <  where the two second-order lines cross over are shown in table 1, 
where they are compared with those of Irving and Thomas [4], Banks and Sinclair [7] 
and Lamont [8]. 

S. Final comments 

The geometric cluster approach that we propose provides an alternative calculation 
for a basically strong-coupling method since the introduction of collective variables 
accelerates the convergence toward the weak-coupling regions. This is an important 
feature in order to describe phase transitions. 

Although the order of the approximation is low we obtain a description of the 
phase boundaries of the model. In order to improve the results for the transition points 
it is necessary to go to higher orders of the cluster approximation. 

The advantage of the method is that the mechanisms for the generation of the 
clusters and the evaluation of the transitions induced by the Hamiltonian can be 
automatized by symbolic computer manipulation. In spite of the fact that the number 
of clusters grows with the order and this will complicate the calculus it is important 
to mention that an appropriate set of collective variables may accelerate the convergence 
toward other regions of the phase space. Efforts are being made in search of a method 
to select the relevant cluster variables that characterize the vacuum of the model [18]. 
This would greatly reduce the number of variables and this is important at higher orders. 
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